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Outlines



• 在機率論裡面，極限定理(limit theorem)扮演舉足輕重的地位。

其中，有兩個定理特別重要:

• 大數法則(laws of large numbers)

• 中央極限定理(central limit theorems)
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Introduction



• 我們先從一個比較知名的不等式開始 – Markov’s Inequality

• Proposition 1 Markov’s Inequality

If 𝑋 is a random variable that takes only nonnegative values, then,

for any value 𝑎 > 0,

𝑃 𝑋 ≥ 𝑎 ≤
𝐸 𝑋

𝑎

Proof:

For 𝑎 > 0, let

𝐼 = ቊ
1 𝑖𝑓 𝑋 ≥ 𝑎
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑠𝑖𝑛𝑐𝑒 𝑋 ≥ 0 ⇒ 𝐼 ≤
𝑋

𝑎 3
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Take expectations of the preceding inequality yields

𝐸 𝐼 ≤
𝐸 𝑋

𝑎
𝑤ℎ𝑖𝑐ℎ, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝐸 𝐼 = 𝑃 𝑋 ≥ 𝑎 , 𝑝𝑟𝑜𝑣𝑒𝑠 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡

As a corollary, we obtain Proposition 2.
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• Proposition 2 Chebyshev’s Inequality

If 𝑋 is a random variable with finite mean 𝜇 and variance 𝜎2, then,

for any value 𝑘 > 0,

𝑃 𝑋 − 𝜇 ≥ 𝑘 ≤
𝜎2

𝑘2

Proof:

Since 𝑋 − 𝜇 2 is a nonnegative random variable, we can apply

Markov’s inequality (with 𝑎 = 𝑘2) to obtain

𝑃{ 𝑋 − 𝜇 2 ≥ 𝑘2} <=
𝐸 𝑋 − 𝜇 2

𝑘2 5
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𝑃{ 𝑋 − 𝜇 2 ≥ 𝑘2} <=
𝐸 𝑋 − 𝜇 2

𝑘2

Since 𝑋 − 𝜇 2 ≥ 𝑘2 if and only if 𝑋 − 𝜇 ≥ 𝑘, so we obtain

𝑃 𝑋 − 𝜇 ≥ 𝑘 ≤
𝐸 𝑋 − 𝜇 2

𝑘2
=
𝜎2

𝑘2

And the proof is complete.
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• 範例一

假設今天某一半導體工廠生廠A晶圓，一周可以生產的片數為隨機變
數，目前已知平均一周為50片。

試問: (a) 生產超過75片的機率為何? (b) 若已知生產片數的變異數為
25，那麼生產數量介於40至60片的機率為何?

Solution:

Let 𝑋 be the number of items that will be produced in a week.

(a) By Markov’s inequality [生產超過75片的機率為何? ]

𝑃 𝑋 > 75 ≤
𝐸 𝑋

75
=
50

75
=
2

3 7
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(a) By Chebyshev’s inequality [若已知生產片數的變異數為25，那麼
生產數量介於40至60片的機率為何?]

𝑃 𝑋 − 50 ≥ 10 ≤
𝜎2

102
=
1

4

Hence,

𝑃 𝑋 − 50 < 10 ≥ 1 −
1

4
=
3

4

So the probability that this week’s production will be between 40

and 60 is at least 75%.
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• 範例二

如果𝑋為uniform distributed over (0,10)，已知𝐸[𝑋] = 5與𝑉𝑎𝑟(𝑋) =
25

3
，

且符合Chebyshev's inequality

𝑃 𝑋 − 5 > 4 ≤
25

3 16
≈ 0.52

Whereas the exact result is

𝑃{|𝑋 − 5| > 4} = 0.2
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• Proposition 3

If 𝑉𝑎𝑟(𝑋) = 0, then

𝑃{𝑋 = 𝐸[𝑋]} = 1

In other words, the only random variables having variances equal to 0
are those which are constant with probability 1.

Proof:

By Chebyshev’s inequality, we have, for any 𝑛 ≥ 1,

𝑃 𝑋 − 𝜇 >
1

𝑛
= 0

Letting 𝑛 → ∞ and using the continuity property of probability yields

0 = lim
𝑛→∞

𝑃 𝑋 − 𝜇 >
1

𝑛
= 𝑃 lim

𝑛→∞
𝑋 − 𝜇 >

1

𝑛
= 𝑃{𝑋 ≠ 𝜇}
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• Theorem 1 The Weak Law of Large Numbers

Let 𝑋1, 𝑋2, … be a sequence of independent and identically

distributed random variables, each having finite mean 𝐸[𝑋𝑖] = 𝜇.

Then, for any 𝜀 > 0,

𝑃
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛
− 𝜇 ≥ 𝜀 → 0 𝑎𝑠 𝑛 → ∞
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Proof:

We shall prove the theorem only under the additional assumption

that the random variables have a finite variance 𝜎2. Now, since

𝐸
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛
= 𝜇 𝑎𝑛𝑑 𝑉𝑎𝑟

𝑋1 + 𝑋2 +⋯+ 𝑋𝑛
𝑛

=
𝜎2

𝑛

It follows from Chebyshev’s inequality that

𝑃
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛
− 𝜇 ≥ 𝜀 ≤

𝜎2

𝑛𝜀2

And the result is proven.
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• 中央極限定理(central limit theorem, CLT)在機率論裡面最重要的定
理之一。簡單來說，這個定理就在說當你今天有大量相互獨立隨機
變數的均值，其分布會收斂於常態分布(normal distribution)。

• Theorem 2 The Central Limit Theorem

• Let 𝑋1, 𝑋2, … be a sequence of independent and identically

distributed random variables, each having mean 𝜇 and variance

𝜎2. Then the distribution of
𝑋1 +⋯+ 𝑋𝑛 − 𝑛𝜇

𝜎 𝑛

Tends to be standard normal as 𝑛 → ∞. That is, for −∞ < 𝑎 < ∞
13
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𝑃
𝑋1 +⋯+ 𝑋𝑛 − 𝑛𝜇

𝜎 𝑛
≤ 𝑎 →

1

2𝜋
න
−∞

𝑎

𝑒−
𝑥2

2 𝑑𝑥 as 𝑛 → ∞

The key to the proof of the central limit theorem is the following

lemma, which we state without proof.

Lemma 1

Let 𝑍1, 𝑍2, … be a sequence of random variables having distribution

functions 𝐹𝑍 and moment generating functions 𝑀𝑍𝑛 , 𝑛 ≥ 1; and let 𝑍

be a random variable having distribution function 𝐹𝑍 and moment

generating function 𝑀𝑍. If 𝑀𝑍𝑛 𝑡 → 𝑀𝑍(𝑡) for all 𝑡, then 𝐹𝑍𝑛 𝑡 →

𝐹𝑍(𝑡) for all 𝑡 at which 𝐹𝑍(𝑡) is continuous. 14
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• Proof of the Central Limit Theorem

Let us assume at first that 𝜇 = 0 and 𝜎2 = 1. We shall prove the theorem

under the assumption that the moment generating function of the 𝑋𝑖,

𝑀(𝑡), exists and is finite. Now, the moment generating function of
𝑋𝑖

𝑛
is

given by

𝐸 exp
𝑡𝑋𝑖

𝑛
= 𝑀

𝑡

𝑛

Thus, the moment generating function of σ𝑖=1
𝑛 𝑋𝑖

𝑛
is given by 𝑀

𝑡

𝑛

𝑛

.

Let 𝐿(𝑡) = 𝑙𝑜𝑔𝑀(𝑡) 15
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• And note that

𝐿(0) = 0

𝐿′ 0 =
𝑀′ 0

𝑀 0
= 𝜇 = 0

𝐿′′ 0 =
𝑀 0 𝑀′′ 0 − 𝑀′(0) 2

𝑀 0 2
= 𝐸 𝑋2 = 1

16
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• Now, to prove the theorem, we must show that 𝑀
𝑡

𝑛

𝑛
→ 𝑒

𝑡2

2 as

𝑛 → ∞, or, equivalently, that 𝑛𝐿
𝑡

𝑛
→

𝑡2

2
as 𝑛 → ∞. To show

this, note that

lim
𝑛→∞

𝐿
𝑡
𝑛

𝑛−1
= lim

𝑛→∞

−𝐿′
𝑡
𝑛

𝑛−
3
2𝑡

−2𝑛−2

= lim
𝑛→∞

𝐿′
𝑡
𝑛

𝑡

2𝑛−
1
2

= lim
𝑛→∞

𝐿′′
𝑡
𝑛

𝑛−
3
2𝑡2

−2𝑛−
3
2

= lim
𝑛→∞

[𝐿′′
𝑡

𝑛

𝑡2

2
] =

𝑡2

2
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• 範例三

如果投擲10顆公平的骰子，試問點數合介於30至40點之間的機率為何?

Solution:

Let 𝑋𝑖 denote the value of the 𝑖th die, 𝑖 = 1,2, … , 10. Since

𝐸 𝑋𝑖 =
7

2
, 𝑉𝑎𝑟 𝑋𝑖 = 𝐸 𝑋𝑖

2 − 𝐸 𝑋 2 =
35

12
The central limit theorem yields

𝑃 29.5 ≤ 𝑋 ≤ 40.5 = 𝑃
29.5 − 35

350
12

≤
𝑋 − 35

350
12

≤
40.5 − 35

350
12

≈ 2Φ 1.0184 − 1 ≈ 0.692
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• 範例四

令𝑋𝑖 , 𝑖 = 1,2,… , 10，為獨立隨機變數，uniformly distributed over

(0,1)。試計算𝑃 σ𝑖=1
10 𝑋𝑖 > 6 的近似值。

Solution:

Since 𝐸[𝑋𝑖] =
1

2
𝑎𝑛𝑑 𝑉𝑎𝑟(𝑋𝑖) =

1

12
, we have, by the central limit

theorem,

𝑃 

𝑖=1

10

𝑋𝑖 > 6 = 𝑃
σ1
10𝑋𝑖 − 5

10
1
12

>
6 − 5

10
1
12

≈ 1 − Φ 1.2 ≈ 0.1367
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• 範例五

期末考完，某位老師需要批改50份考卷。假設批改每一份考卷都是獨
立，平均需要花20分鐘，標準差為4分鐘。試問: 該老師在最一開始的
450分鐘內至少批改完25份考卷的機率為何?

Solution:

If we let 𝑋𝑖 be the time that it takes to grade exam 𝑖, then

𝑋 =

𝑖=1

25

𝑋𝑖

is the time it takes to grade the first 25 exams. 

20
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𝐸[𝑋] =

𝑖=1

25

𝐸[𝑋𝑖] = 25(20) = 500

𝑉𝑎𝑟(𝑋) =

𝑖=1

25

𝑉𝑎𝑟(𝑋𝑖) = 25(16) = 400

Consequently, with 𝑍 being a standard normal random variable, 

we have

𝑃 𝑋 ≤ 450 = 𝑃
𝑋 − 500

400
≤
450 − 500

400
≈ 𝑃 𝑍 ≤ −2.5

= 𝑃 𝑍 ≥ 2.5 = 1 −Φ 2.5 = 0.006 21
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• Theorem 3 Central Limit Theorem for Independent Random

Variables

Let 𝑋1, 𝑋2, … , be a sequence of independent and identically

distributed random variables, each having a finite mean 𝜇 =
𝐸[𝑋𝑖]. Then, with probability 1,

𝑋1 + 𝑋2 +⋯+ 𝑋𝑛
𝑛

− 𝜇 𝑎𝑠 𝑛 → ∞

As an application of the strong law of large numbers, suppose

that a sequence of independent trials of some experiment is

performed.
22
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Let 𝐸 be a fixed event of the experiment, and denote by 𝑃(𝐸) the
probability that 𝐸 occurs on any particular trial.

Letting

𝑋𝑖 = ቊ
1 𝑖𝑓 𝐸 𝑜𝑐𝑐𝑢𝑟𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑡𝑟𝑖𝑎𝑙
0 𝑖𝑓 𝐸 𝑑𝑜𝑠𝑒 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟 𝑜𝑛 𝑡ℎ𝑒𝑖𝑡ℎ 𝑡𝑟𝑖𝑎𝑙

We have, by the strong law of large numbers, that with probability 1.
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛
→ 𝐸 𝑋 = 𝑃(𝐸)

Since 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 represents the number of times that the event 𝐸
occurs in the first 𝑛 trials, we may interpret abovementioned equation as
starting that, with probability 1, the limiting proportion of time that the
event 𝐸 occurs is just 𝑃(𝐸). 23
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• Although the theorem can be proven without this assumption, our

proof of the strong law of large numbers will assume that the

random variables 𝑋𝑖 have a finite fourth moment. That is, we will

suppose that 𝐸[𝑋𝑖
4] = 𝑃(𝐸).

24
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• Proof:

Assume that 𝜇 , the mean of the 𝑋𝑖 , is equal to 0. Let 𝑆𝑛 =
σ𝑖=1
𝑛 𝑋𝑖 and consider

𝐸[𝑆𝑛
4]

= 𝐸[ 𝑋1 +⋯+ 𝑋𝑛 𝑋1 +⋯+ 𝑋𝑛 × (𝑋1 +⋯+ 𝑋𝑛) (𝑋1 +⋯+ 𝑋𝑛)]

Expanding the right side of the preceding equation results in terms
of the form

𝑋𝑖
4, 𝑋𝑖

3𝑋𝑗 , 𝑋𝑖
2𝑋𝑗

2, 𝑋𝑖
2𝑋𝑗𝑋𝑘 , 𝑎𝑛𝑑 𝑋𝑖𝑋𝑗𝑋𝑘𝑋𝑙

where 𝑖, 𝑗, 𝑘, 𝑎𝑛𝑑 𝑙 are all different. Because all the 𝑋𝑖 have mean 0,
it follows by independence that

𝐸[𝑋𝑖
3𝑋𝑗] = 𝐸[𝑋𝑖

3]𝐸[𝑋𝑗] = 0 25
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𝐸[𝑋𝑖
2𝑋𝑗𝑋𝑘] = 𝐸[𝑋𝑖

2]𝐸[𝑋𝑗]𝐸[𝑋𝑘] = 0

𝐸[𝑋𝑖𝑋𝑗𝑋𝑘𝑋𝑙] = 𝐸[𝑋𝑖]𝐸[𝑋𝑗]𝐸[𝑋𝑘]𝐸[𝑋𝑙] = 0

Now, for a given pair 𝑖 and 𝑗, there will be
4
2

= 6 terms in the

expansion that will equal 𝑋𝑖
2𝑋𝑗

2 . Hence, upon expanding the

preceding product and taking expectations term by term, it

follows that

𝐸 𝑆𝑛
4 = 𝑛𝐸 𝑋𝑖

4 + 6
𝑛
2

𝐸 𝑋𝑖
2𝑋𝑗

2 = 𝑛𝐾 + 3𝑛 𝑛 − 1 𝐸 𝑋𝑖
2 𝐸[𝑋𝑗

2]

Where we have once again made use of the independence

assumption. 26
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• Now since

0 ≤ 𝑉𝑎𝑟 𝑋𝑖
2 = 𝐸 𝑋𝑖

4 − 𝐸 𝑋𝑖
2 2

We have 𝐸[𝑋𝑖
2]

2
≤ 𝐸 𝑋𝑖

4 = 𝐾

Therefore, from the preceding, we obtain

𝐸 𝑆𝑖
4 ≤ 𝑛𝐾 + 3𝑛(𝑛 − 1)𝐾

which implies that

𝐸
𝑆𝑛
4

𝑛4
≤

𝐾

𝑛3
+
3𝐾

𝑛2

27
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Therefore,

𝐸 

𝑛=1

∞
S𝑛
4

𝑛4
= 

𝑛=1

∞

𝐸
𝑆𝑛
4

𝑛4
< ∞

But the preceding implies that, with probability 1, σ𝑛=1
∞ 𝑆𝑛

4

𝑛4
< ∞ . (For if

there is a positive probability that the sum is infinite, then its expected

value is infinite.) But the convergence of a series implies that its 𝑛th

term goes to 0; so we can conclude that, with probability 1,

lim
𝑛→∞

𝑆𝑛
4

𝑛4
= 0

28

The Strong Law of Large Numbers



• But if
𝑆𝑛
4

𝑛4
=

𝑆𝑛

𝑛

4
goes to 0, then so must

𝑆𝑛

𝑛
; hence, we have

proven that, with probability 1,

•
𝑆𝑛

𝑛
→ 0 𝑎𝑠 𝑛 → ∞

• When 𝜇, the mean of the 𝑋𝑖, is not equal to 0, we can apply the
preceding argument to the random variables 𝑋𝑖 − 𝜇 to obtain
that with probability 1,

lim
𝑛→∞



𝑖=1

𝑛
𝑋𝑖 − 𝜇

𝑛
= 0; 𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦, lim

𝑛→∞


𝑖=1

𝑛
𝑋𝑖
𝑛
= 𝜇

which proves the result. 29
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• Selected Problems from Sheldon Ross Textbook [1].
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The End
If you have any questions, please do not hesitate to ask me.

Thank you for your attention ))

Probability & Statistics (1)

Limit Theorems (I)


